top of page

Publications

2024

Plasma treatment modifies element distribution in seed coating and affects further germination and plant growth through interaction with soil microbiome. Kalachova T., Jindřichová B., Pospíchalová R., Fujera J., Artemenko A., Jančík J., Antonova A., Kylián O., Prukner V., Burketová L., Šimek M., and Homola T. (2024) Journal of Agricultural and Food Chemistry 72, 11, 5609–5624. doi: 10.1021/acs.jafc.3c07160

Does fungal infection increase the palatability of oilseed rape to insects? Jindřichová, B., Rubil, N., Rezek, J., Ourry, M., Hauser, T.P. and Burketová, L.. (2024) Pest Management Science 80: 2480–2494https://doi.org/10.1002/ps.7998 

 

Upregulation of LmHxt1 gene is associated with reduced virulence of Leptosphaeria maculans on Brassica napus. Stehlík D., Trdá L., Leontovyčová H., Kalachova T., Burketová L. (2024) Journal of Plant Pathology doi: 10.1007/s42161-023-01568-x

 

A new set of international Leptosphaeria maculans isolates as a resource for 2 elucidation of the basis and evolution of blackleg disease on Brassica napus. Van de Wouw A.P., Scanlan J.L., Al-Mamun H.A., Balesdent M.-H., Bousset L., Burketová L. et al. (2024) Plant Pathology 73, 170–185.. doi: 10.1111/ppa.13801

2023

Responses to abiotic and biotic stresses - from the cellular level to fruit development - contributions of the Czech Centre for Experimental Plant Biology. Vanková, R.; Burketová, L.; Brzobohatý, B.; Černý, M.; Hafidh, S.; Hejátko, J.; Honys, D.; Hoyerová, K.; Juříček, M.; Martinec, J.; Moravec, T.; Pečenková, T.; Petrášek, J.; Pospíšil, J.; Retzer, K.; Robert, H.S.; Štorchová, H.; Vaněk, T.; Žárský, V. (2023) Biologia plantarum , 67, 166-74. doi: 10.32615/bp.2023.028

 

Genome-wide identification of the opsin protein in Leptosphaeria maculans and comparison with other fungi (pathogens of Brassica napus). Mohri M, Moghadam A, Burketová L and Ryšánek P. (2023)  Frontiers in Microbiology. 14:1193892. doi: 10.3389/fmicb.2023.1193892

Impact of palladium nanoparticles on plant and its fungal pathogen. A case study: Brassica napus – Plenodomus lingam. Maryška L., Jindřichová B., Siegel J., Záruba K., Burketová L. (2023) AoB PLANTS 15:2, plad004. doi: 10.1093/aobpla/plad004

Controlled natural selection of soil microbiome through plant-soil feedback confers resistance to a foliar pathogen. Kalachova T., Jindřichová B., Burketová L., Monard C., Blouin M., Jacquiod S., ​Ruelland E., Puga-Freitas R. Plant and Soil (2023). 485, 181–195, doi: 10.1007/s11104-022-05597-w

2022

 

DIACYLGLYCEROL KINASE 5 Participates in Flagellin-Induced Signaling in Arabidopsis. Kalachova T., Škrabálková E., Pateyron S., Soubigou-Taconnat L., Djafi N., Collin S., Sekereš J., Burketová L., Potocký M., Pejchar P., Ruelland E., Plant Physiology (2022), kiac354, doi: 10.1093/plphys/kiac354

 

Noble metal nanoparticles in agriculture: impacts on plants, associated microorganisms. Burketová L., Martinec J., Siegel J., Macůrková A., Maryška L., Valentová O. (2022). Biotechnology Advances 18:107929. doi: 10.1016/j.biotechadv.2022.107929.

 

AGP-like proteins from Ulva lactuca activate immune responses and plant resistance in an oilseed crop. Přerovská T., Jindřichová B., Henke S.,  Yvin J.-C., Ferrieres V., Burketová L., Lipovová P., Nguema-Ona E. (2022) Frontiers in Plant Sciences. 13:893858. doi: 10.3389/fpls.2022.893858

An Arabidopsis mutant deficient in phosphatidylinositol-4-phosphate kinases ß1 and ß2 displays some constitutive auxin responses in roots. Starodubtseva A., Kalachova T., Retzer K., Jelinková A., Dobrev P., Lacek J., Pospichalová R., Angelini J., Guivarc’h A., Pateyron S., Soubigou-Taconnat L., Burketová L., Ruelland E. (2022) Scientific Reports. 12:6947 doi: 10.1038/s41598-022-10458-8

Isolation and characterization of two lytic phages efficient against phytopathogenic bacteria of Pseudomonas and Xanthomonas genera. Korniienko N., Kharina A, Zrelovs N., Jindřichová B, Moravec T., Budzanivska I., Burketova L., Kalachova T. (2022). Frontiers in Microbiology. 13:853593. doi: 10.3389/fmicb.2022.853593

 

Phages of phytopathogenic bacteria: high potential but challenging application. Korniienko N., Kharina A., Budzanivska I., Burketová L., Kalachova T. (2022). Plant Protection Science. 58: 81–91. doi: 10.17221/147/2021-PPS

Specialist aphids feeding causes local activation of salicylic and jasmonic acid signaling in Arabidopsis veins. Rubil N., Kalachova T., Hauser T.P., Burketová L. (2022). Molecular Plant-Microbe Interactions. 35:2, 119-124. doi: 10.1094/MPMI-08-21-0203-SC

 

2021

Effect of round-shaped silver nanoparticles on the genetic and functional diversity of soil microbial community in soil and “soil-plant” systems. Macůrková A., Maryška L., Jindřichová B., Drobníková T., Vrchotová B., Pospíchalová R., Záruba K., Hubáček T., Siegel T., Burketová L., Lovecká P., Valentová O. (2021) Applied Soil Ecology, Vol. 168, 104165, ISSN 0929-1393,
doi: 10.1016/j.apsoil.2021.104165.

BODIPY conjugate of epibrassinolide as a novel biologically active probe for in vivo imaging. Starodubtseva A., Kalachova T., Iakovenko O., Stoudková V., Zhabinskii V., Khripach V., Ruelland E., Martinec J., Burketová L., Kravets V. (2021) International Journal of Molecular Sciences. 22, 3599. doi: 10.3390/ijms22073599

 

Regulation of the microsomal proteome by salicylic acid and deficiency of phosphatidylinositol‐4‐kinases β1 and β2 in Arabidopsis thaliana. Junková P., Neubergerová M., Kalachova T.,Valentová O., Janda M. (2021) Proteomics  

doi: 10.1002/pmic.202000223

Influence of salt stress on the flg22 induced ROS production in Arabidopsis thaliana leaves. Amrahov, N.R., Janda M., Mammadov Z.M., Valentová O., Burketová L. and Quliyev A.A. (2021). Pakistanian Journal of Botany, 53(5) 

doi: 10.30848/PJB2021-5(16)

Brassinosteroids application induces phosphatidic acid production and modify antioxidant enzymes activity in tobacco in calcium dependent manner. Kretynin S., Kolesnikov Y., Derevyanchuk M., Kalachova T., Blume Y., Khripach V., Kravets V. (2021) Steroids. 2021, 168, 108444 doi: 10.1016/j.steroids.2019.108444

2020

Disrupted actin: a novel player in pathogen attack sensing? Leontovyčová H., Kalachova T. and Janda M. (2020) New Phytologist. doi:10.1111/nph.16584

Auxin biosynthesis in the phytopathogenic fungus Leptosphaeria maculans is associated with enhanced transcription of indole-3-pyruvate decarboxylase LmIPDC2 and tryptophan aminotransferase LmTAM1. Leontovyčová H., Trdá L., Dobrev P., Šašek V., Gay E., Balesdent M.-H., Burketová L. (2020) Research in Microbiology, V. 171: 5–6, pp. 174-184, doi: 10.1016/j.resmic.2020.05.001.

Identification of salicylic acid-independent responses in Arabidopsis phosphatidylinositol 4-kinase beta double mutant. Kalachova T., Janda M., Šašek V., Ortmannová J., Nováková P., Dobrev P., Kravets V., Guivarc’h A., Moura D., Burketová L., Valentová O., Ruelland E.(2020)  Annals of Botany. doi: 10.1093/aob/mcz112

2019

“Salicylic acid mutant collection” as a tool to explore the role of salicylic acid in regulation of plant growth under a changing environment. Pluhařová K., Leontovyčová H., Stoudková V., Pospíchalová R., Maršík P., Klouček P., Starodubtseva A., Iakovenko O., Krčková Z., Valentová O., Burketová L., Janda M., Kalachova T. (2019) International Journal of Molecular Sciences 20, 6365.  doi: 10.3390/ijms20246365

Interplay between phosphoinositides and actin cytoskeleton in the regulation of immunity related responses in Arabidopsis thaliana seedlings. Kalachova T., Leontovyčová H., Iakovenko O., Pospíchalová R., Maršík P., Klouček P., Janda M., Valentová O., Kocourková D., Martinec J., Burketová L., Ruelland E.(2019) Environmental and Experimental Botany, doi: 10.1016/j.envexpbot.2019.103867

Dual mode of the saponin aescin in plant protection: antifungal agent and plant defense elicitor. Trdá L., Janda M., Macková D., Pospíchalová R., Dobrev P., Burketová L. and Matušinsky P. (2019) Frontiers in Plant Sciences 10:1448. doi: 10.3389/fpls.2019.01448

Actin depolymerization is able to increase plant resistance against pathogens via activation of salicylic acid signalling pathway. Leontovyčová H., Kalachova T., Trdá L., Pospíchalová R., Lamparová L., Dobrev P., Malínská K., Burketová L., Valentová O., Janda M. (2019)  Scientific Reports.  9: 10397. doi: 10.1038/s41598-019-46465-5

Temporary heat stress suppresses PAMP‐triggered immunity and resistance to bacteria in Arabidopsis thaliana. Janda M., Lamparová L., Zubíková A., Burketová L., Martinec J., Krčková Z. (2019) Molecular Plant Pathology  20(7), 1005 – 1012, doi: 10.1111/mpp.12799

Recognition of elicitors in grapevine: from MAMP and DAMP perception to induced resistance. Héloir M.-C., Adrian M., Brulé D., Claverie J., Cordelier S., Daire X., Dorey S., Gauthier A., Lemaître-Guillier C., Negrel J., Trdá L, Trouvelot S., Vandelle E. and Poinssot B.  (2019) Frontiers in Plant Sciences 10:1117. doi: 10.3389/fpls.2019.01117

Characterisation of Arabidopsis flotillins in response to stresses. Kroumanova K., Kocourkova D., Danek M., Lamparova L., Pospichalova R., Malinska K., Krckova Z., Burketova L., Valentova O., Martinec J., Janda M.(2019) Biologia Plantarum 63 144-152, doi: 10.32615/bp.2019.017

2018

Biowaste-derived hydrolysates as plant disease suppressants for oilseed rape. Jindrichova B., Burketova L., Montoneri E. and Francavilla M. (2018) Journal of Cleaner Production.  183: 335-342. doi: 10.1016/j.jclepro.2018.02.112

 

The Arabidopsis thaliana non-specific phospholipase C2 is involved in the response to Pseudomonas syringae attack. Krčková Z., Kocourková D., Daněk M., Brouzdová J., Pejchar P., Janda M., Pokotylo I., Ott P.G., Valentová O., Martinec J.(2018) Annals Of Botany,121 297-310, doi: 10.1093/aob/mcx160

Round-shape gold nanoparticles: effect of particle size and concentration on Arabidopsis thaliana root growth. Siegel J., Záruba K., Švorčík V., Kroumanová K., Burketová L., Martinec J. (2018) Nanoscale Research Letters13 (1): 95. doi: 10.1186/s11671-018-2510-9. 

Mapping of plasma membrane proteins interacting with Arabidopsis thaliana Flotillin 2. Junková P., Daněk M., Kocourková D., Brouzdová J., Kroumanová K., Zelazny E., Janda M., Hynek R., Martinec J., Valentová O. (2018) Frontiers In Plant Science, 9. doi: 10.3389/fpls.2018.00991

2017

Cytokinin metabolism of pathogenic fungus Leptosphaeria maculans involves isopentenyltransferase, adenosine kinase and cytokinin oxidase/dehydrogenase. Trdá L., Barešová M., Šašek V., Nováková M., Zahajská L., Dobrev P.I., Motyka V., Burketová L. (2017) Frontiers In Microbiology8 1374, doi: 10.3389/fmicb.2017.01374

Early Arabidopsis root hair growth stimulation by pathogenic strains of Pseudomonas syringae. Pečenková T., Janda M., Ortmannová J., Hajná V., Stehlíková Z., Žárský V. (2017) Annals Of Botany, 120 437–446 2017, doi: 10.1093/aob/mcx073

Diacylglycerol kinases activate tobacco NADPH oxidase-dependent oxidative burst in response to cryptogein. Cacas J.-L., Gerbeau-Pissot P., Fromentin J., Cantrel C., Thomas D., Jeannette E., Kalachova T., Mongrand, S., Simon-Plas, F. & Ruelland, E. (2017) Plant Cell and Environmentdoi: 10.1111/pce.12771

 

2016

 

Separation and identification of candidate protein elicitors from the cultivation medium of Leptosphaeria maculans inducing resistance in Brassica napus. Nováková M., Kim P. D., Šašek V., Burketová L., Jindřichová B., Šantrůček J. and Valentová O.(2016) Biotechnology Progress, 32,(4) 918-928 doi: 10.1002/btpr.2266

Leptosphaeria maculans effector AvrLm4-7 affects SA- and ET- signalling and H2O2 accumulation in Brassica napus. Nováková M., Šašek V., Trdá L., Krutinová H., Mongin T., Valentová O., Balesdent M.-H., Rouxel T. and Burketová L. (2016) Molecular Plant Pathology, 17: 818-831. doi: 10.1111/mpp.12332

 

2015

 

Bio-based resistance inducers for sustainable plant protection against pathogens. Burketová L., Trdá L., Ott P.G., Valentová O. (2015) Biotechnology Advances. 33: 994-1004, doi: 10.1016/j.biotechadv.2015.01.004

 

Phospholipase D affects translocation of NPR1 to the nucleus in Arabidopsis thaliana. Janda M., Šašek V., Chmelařová H., Andrejch J., Nováková M., Hajšlová J., Burketová L., and Valentová O.(2015) Frontiers in Plant Science 6, 59. doi: 10.3389/fpls.2015.00059 

Identification of phospholipase D genes in Brassica napus and the transcriptional analysis after phytohormone treatment and pathogen infection. Janda M., Ježková L., Nováková M., Valentová O., Burketová L. and Šašek V. (2015) Biologia Plantarum, 59: 581-590, DOI: 10.1007/s10535-015-0513-2

 

Growth and stress response in Arabidopsis thalianaNicotiana benthamianaGlycine maxSolanum tuberosum and Brassica napus cultivated under polychromatic LEDs. Janda M., Navrátil O., Haisel D., Jindřichová B., Fousek J, Burketová L., Čeřovská N. and Moravec T. (2015) Plant Methods, 11: 31 doi:10.1186/s13007-015-0076-4 

Perception of pathogenic or beneficial bacteria and their evasion of host immunity: Pattern recognition receptors in the frontline. Trdá L., Boutrot F., Ciaverie J., Brulé D., Dorey S., Poinssot B. (2015) Frontiers in Plant Science, 6 (APR), art. no. 219, 11 p. doi: 10.3389/fpls.2015.00219

Magical mystery tour: Salicylic acid signalling. Janda M., Ruelland E. (2015) Environmental And Experimental Botany, 114: 117-128.   doi: 10.1016/j.envexpbot.2014.07.003

 

2014

 

Constitutive salicylic acid accumulation in pi4kIIIβ1β2 Arabidopsis plants stunts rosette but not root growth. Sašek V., Janda M., Delage E., Puyaubert J., Guivarc'h A., López Maseda E., Dobrev P.I., Caius J., Bóka K., Valentová O., Burketová L., Zachowski A., Ruelland E. (2014) New Phytologist, 203 (3), 805-816. doi: 10.1111/nph.12822

Changes in actin dynamics are involved in salicylic acid signaling pathway. Matoušková J., Janda M., Fišer R., Sašek V., Kocourková D., Burketová L., Dušková J., Martinec J., Valentová O. (2014) Plant Science, 223, 36-44 doi: 10.1016/j.plantsci.2014.03.002

Novel properties of antimicrobial peptide anoplin. Jindřichová B., Burketová L., Novotná Z. (2014) Biochemical and Biophysical Research Communications, 444 (4), pp. 520-524. doi: 10.1016/j.bbrc.2014.01.097

Interconnection between actin cytoskeleton and plant defence signaling. Janda M., Matoušková J., Burketová L., Valentová O.(2014) Plant Signaling and Behavior, doi: 10.4161/15592324.2014.976486

 Distinct regulation of rosette and root growth in the salicylic acid-accumulating pi4kIIIβ1β2 double mutant. Janda M., Šašek V., Ruelland E. (2014) Plant Signaling and Behavior, doi: 10.4161/15592324.2014.977210

 

Plant hormones in defense response of Brassica napus to Sclerotinia sclerotiorum - Reassessing the role of salicylic acid in the interaction with a necrotroph. Nováková M., Šašek V., Dobrev P., Valentová O., Burketová L. (2014) Plant Physiology and Biochemistry, 80, pp. 308-317. doi: 10.1016/j.plaphy.2014.04.019

2013

Cell wall components of Leptosphaeria maculans enhance resistance of Brassica napus. Kim P.D., Šašek V., Burketová L., Čopíková J., Synytsya A., Jindřichová B., Valentová, O. (2013) Journal of Agricultural and Food Chemistry, 61 (22), pp. 5207-5214. DOI: 10.1021/jf401221v

Phosphoglycerolipids are master players in plant hormone signal transduction. Janda M., Planchais S., Djafi N., Martinec J., Burketova L., Valentova O., Zachowski A., Ruelland E. (2013) Plant Cell Reports, 32 (6), pp. 839-851. doi: 10.1007/s00299-013-1399-0

2012

Recognition of avirulence gene AvrLm1 from hemibiotrophic ascomycete Leptosphaeria maculans triggers salicylic acid and ethylene signaling in Brassica napus. Šašek V., Nováková M., Jindřichová B., Bóka K., Valentová O., Burketová L. (2012) Molecular Plant-Microbe Interactions, 25 (9), pp. 1238-1250. doi: 10.1094/MPMI-02-12-0033-R

β-aminobutyric acid protects Brassica napus plants from infection by Leptosphaeria maculans. Resistance induction or a direct antifungal effect? Šašek V., Nováková M., Dobrev P., Valentová O., Burketová L. (2012) European Journal of Plant Pathology, 133 (1), pp. 279-289. doi: 10.1007/s10658-011-9897-9

   

2011

Role of hydrogen peroxide and antioxidant enzymes in the interaction between a hemibiotrophic fungal pathogen, Leptosphaeria maculans, and oilseed rape. Jindřichová B., Fodor J., Šindelářová M., Burketová L., Valentová, O. (2011) Environmental and Experimental Botany, 72 (2), pp. 149-156. doi: 10.1016/j.envexpbot.2011.02.018

 

 

bottom of page